Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.697
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657042

RESUMO

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Assuntos
Endocitose , Depressão Sináptica de Longo Prazo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de AMPA , Receptores de Glutamato Metabotrópico , Receptores de AMPA/metabolismo , Animais , Fosforilação , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Tirosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Camundongos , Humanos , Neurônios/metabolismo
2.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426491

RESUMO

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.


Assuntos
Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Receptores de Glutamato Metabotrópico , Animais , Criança , Humanos , Pré-Escolar , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Proteína do X Frágil de Retardo Mental/uso terapêutico , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Plasticidade Neuronal
3.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391904

RESUMO

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.


Assuntos
Proteínas RGS , Receptores de Glutamato Metabotrópico , Ratos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Astrócitos/metabolismo , Ratos Sprague-Dawley , Proteínas RGS/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sinalização do Cálcio
4.
EMBO Mol Med ; 16(3): 506-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374465

RESUMO

Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.


Assuntos
Compostos Benzidrílicos , Síndrome do Cromossomo X Frágil , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Receptores de Glutamato Metabotrópico/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
5.
Neurosci Lett ; 823: 137664, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38309326

RESUMO

Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Camundongos , Ratos , Animais , Doença de Alzheimer/metabolismo , Roedores/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Ratos Endogâmicos F344 , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Sinalização do Cálcio/fisiologia
6.
Mol Pharmacol ; 105(5): 348-358, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38423750

RESUMO

Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.


Assuntos
Disfunção Cognitiva , Receptores de Glutamato Metabotrópico , Humanos , Potenciação de Longa Duração , Transdução de Sinais , Receptores de Glutamato Metabotrópico/metabolismo
7.
Dev Cell ; 59(5): 579-594.e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309264

RESUMO

There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Humanos , Ácido Glutâmico , Astrócitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores ErbB , Microambiente Tumoral
8.
Acta Cytol ; 68(1): 66-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38281480

RESUMO

INTRODUCTION: Chondromyxoid fibroma (CMF) is a rare, benign bone tumor that occurs predominantly in the second and third decades of life, more frequently in males. Overexpression of GRM1 as a consequence of tumor-specific gene rearrangement of GRM1 has recently been reported as a useful immunohistochemical marker for histopathological diagnosis of CMF. However, the usefulness of GRM1 staining of cytology specimens has not yet been evaluated. In this report, the cytological findings and GRM1 immunocytochemistry of two cases of CMF are described. CASE PRESENTATIONS: Case 1 was a 15-year-old girl with a rib tumor. Imaging findings suggested a benign neurogenic tumor such as schwannoma. The tumor had increased in size over a 2-year period and was resected. Case 2 was a 14-year-old boy with a metatarsal tumor involving his left first toe. Imaging findings were suspicious of a benign neoplastic lesion. Biopsy findings suggested a benign tumor, and the patient underwent tumor resection. Cytologically, in both cases the tumor cells were predominantly spindle-shaped or stellate, with a myxoid to chondromyxoid background matrix and multinucleated giant cells, and these matrices were metachromatic with Giemsa staining. Cellular atypia was more accentuated in case 2 than in case 1. Immunocytochemical staining for GRM1 was positive in both cases. CONCLUSION: Due to the overlap in cytological findings, it is often difficult to differentiate CMF from chondroblastoma and chondrosarcoma grade 2. Immunocytochemical staining for GRM1 may support the diagnosis of CMF, and the reuse of Papanicolaou-stained specimens is applicable. The present cases further demonstrated the difficulty of differentiating CMF from other mimicking tumors such as chondroblastoma and chondrosarcoma grade 2. In such instances, immunocytochemistry for GRM1 is applicable to the diagnostic process, the value of which is strengthened by reusing Papanicolaou-stained specimens.


Assuntos
Neoplasias Ósseas , Condroblastoma , Condrossarcoma , Fibroma , Adolescente , Feminino , Humanos , Masculino , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/patologia , Condroblastoma/diagnóstico , Condroblastoma/cirurgia , Condroblastoma/metabolismo , Condrossarcoma/patologia , Citologia , Fibroma/diagnóstico , Fibroma/cirurgia , Fibroma/patologia , Receptores de Glutamato Metabotrópico/imunologia , Receptores de Glutamato Metabotrópico/metabolismo
9.
J Med Chem ; 67(2): 1314-1326, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170918

RESUMO

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Sistema Nervoso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos , Ácidos Carboxílicos
10.
Exp Physiol ; 109(1): 81-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656490

RESUMO

A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.


Assuntos
Fosfolipase D , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Hipocampo/metabolismo , Terminações Nervosas/metabolismo , Fosfolipase D/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
11.
Sci Adv ; 9(49): eadi8076, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055809

RESUMO

The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (ß-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient ß-arr coupling, which enables endocytosis and recycling, mGluR8 and ß-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control ß-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/ß-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.


Assuntos
Receptores de Glutamato Metabotrópico , beta-Arrestinas/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
12.
Nat Commun ; 14(1): 8288, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092773

RESUMO

Metabotropic glutamate receptors (mGluRs) are dimeric class C G-protein-coupled receptors that operate in glia and neurons. Glutamate affinity and efficacy vary greatly between the eight mGluRs. The molecular basis of this diversity is not understood. We used single-molecule fluorescence energy transfer to monitor the structural rearrangements of activation in the mGluR ligand binding domain (LBD). In saturating glutamate, group II homodimers fully occupy the activated LBD conformation (full efficacy) but homodimers of group III mGluRs do not. Strikingly, the reduced efficacy of Group III homodimers does not arise from differences in the glutamate binding pocket but, instead, from interactions within the extracellular dimerization interface that impede active state occupancy. By contrast, the functionally boosted mGluR II/III heterodimers lack these interface 'brakes' to activation and heterodimer asymmetry in the flexibility of a disulfide loop connecting LBDs greatly favors occupancy of the activated conformation. Our results suggest that dimerization interface interactions generate substantial functional diversity by differentially stabilizing the activated conformation. This diversity may optimize mGluR responsiveness for the distinct spatio-temporal profiles of synaptic versus extrasynaptic glutamate.


Assuntos
Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dimerização , Ácido Glutâmico/metabolismo , Transferência Ressonante de Energia de Fluorescência
13.
Sheng Li Xue Bao ; 75(5): 629-635, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37909134

RESUMO

The purpose of the present study was to explore the role of carotid body metabotropic glutamate receptor 1 (mGluR1) in chronic intermittent hypoxia (CIH)-induced carotid body plasticity. Sprague Dawley (SD) rats were exposed to CIH (6%-21% O2, 4 min/cycle, 8 h/day) for 4 weeks. The blood pressure of rats was monitored non-invasively by tail-cuff method under consciousness. RT-qPCR was used to examine the mRNA expression level of mGluR1 in rat carotid body. Western blot was used to detect the protein expression level of mGluR1 in rat carotid body. The role of mGluR1 in CIH-induced carotid body sensory long-term facilitation (sLTF) was investigated by ex vivo carotid sinus nerve discharge recording, and the carotid body sLTF was evoked by a 10-episode of repetitive acute intermittent hypoxia (AIH: 1 min of 5% O2 interspersed with 5 min of 95% O2). The results showed that: 1) CIH increased the systolic blood pressure (P < 0.001), diastolic blood pressure (P < 0.005) and mean arterial blood pressure (P < 0.001) of rats; 2) CIH decreased the mRNA and protein levels of mGluR1 in the rat carotid body (P < 0.01); 3) 4 weeks of CIH induced carotid body sLTF significantly, exhibiting as an increasing baseline sensory activity during post-AIH, which was inhibited by application of an agonist of group I metabotropic glutamate receptors, (S)-3,5-dihydroxyphenylglycine (DHPG), during sLTF induction (P < 0.005). In summary, these results suggest that activation of mGluR1 inhibits CIH-induced carotid body plasticity in rats.


Assuntos
Corpo Carotídeo , Receptores de Glutamato Metabotrópico , Ratos , Animais , Corpo Carotídeo/metabolismo , Ratos Sprague-Dawley , Hipóxia , Receptores de Glutamato Metabotrópico/metabolismo , RNA Mensageiro/metabolismo
14.
Biomed Pharmacother ; 169: 115917, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38006617

RESUMO

BACKGROUND: Glutamate stimuli and hyperactivation of its receptor are predominant determinants of ischemia-induced cytotoxic cerebral edema, which is closely associated with protein nanoparticle (PN)-induced increases in osmotic pressure. Herein, we investigated the electrochemical and mechanical mechanisms underlying the neuron swelling induced by PNs via the co-activation of N-methyl-D-aspartate receptor subunit (NMDAR) and excitatory metabotropic glutamate receptors (mGluRs). RESULTS: We observed that co-activation of ionic glutamate receptor NMDAR and Group I metabotropic mGluRs promoted alteration of PN-induced membrane potential and increased intracellular osmosis, which was closely associated with calcium and voltage-dependent ion channels. In addition, activation of NMDAR-induced calmodulin (CaM) and mGluR downstream diacylglycerol (DAG)/protein kinase C α (PKCα) were observed to play crucial roles in cytotoxic hyperosmosis. The crosstalk between CaM and PKCα could upregulate the sensitivity and sustained opening of sulfonylurea receptor 1 (SUR1)-transient receptor potential cation channel subfamily M member 4 (TRPM4) and transmembrane protein 16 A (TMEM16A) channels, respectively, maintaining the massive Na+/Cl- influx, and the resultant neuron hyperosmosis and swelling. Intracellular PNs and Na+/Cl- influx were found to be as potential targets for cerebral edema treatment, using the neurocyte osmosis system and a cerebral ischemic rat model. CONCLUSIONS: This study highlights PNs as a key factor in "electrochemistry-tension" signal transduction controlling Na+/Cl- ion channels and increased osmotic pressure in ischemia-induced cytotoxic edema. Moreover, enhanced sensitivity in both Na+ and Cl- ion channels also has a crucial role in cerebral edema.


Assuntos
Edema Encefálico , Nanopartículas , Receptores de Glutamato Metabotrópico , Canais de Cátion TRPM , Ratos , Animais , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Pressão Osmótica , Proteína Quinase C-alfa/metabolismo , Edema , Isquemia , Canais de Cátion TRPM/metabolismo
15.
Eur J Neurosci ; 58(10): 4166-4180, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821126

RESUMO

Expression of the immediate early gene Arc/Arg3.1 (Arc), a key mediator of synaptic plasticity, is enhanced by neural activity and then reduced by proteasome-dependent degradation. We have previously shown that the disruption of Arc degradation, in an Arc knock-in mouse (ArcKR), where the predominant Arc ubiquitination sites were mutated, reduced the threshold to induce, and also enhanced, the strength of Group I metabotropic glutamate receptor-mediated long-term depression (DHPG-LTD). Here, we have investigated if ArcKR expression changes long-term potentiation (LTP) in CA1 area of the hippocampus. As previously reported, there was no change in basal synaptic transmission at Schaffer collateral/commissural-CA1 (SC-CA1) synapses in ArcKR versus wild-type (WT) mice. There was, however, a significant increase in the amplitude of synaptically induced (with low frequency paired-pulse stimulation) LTD in ArcKR mice. Theta burst stimulation (TBS)-evoked LTP at SC-CA1 synapses was significantly reduced in ArcKR versus WT mice (after 2 h). Group 1 mGluR priming of LTP was abolished in ArcKR mice, which could also potentially contribute to a depression of LTP. Although high frequency stimulation (HFS)-induced LTP was not significantly different in ArcKR compared with WT mice (after 1 h), there was a phenotype in environmentally enriched mice, with the ratio of LTP to short-term potentiation (STP) significantly reduced in ArcKR mice. These findings support the hypothesis that Arc ubiquitination supports the induction and expression of LTP, likely via limiting Arc-dependent removal of AMPA receptors at synapses.


Assuntos
Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Estimulação Elétrica
16.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629122

RESUMO

The expression of canonical chemosensory receptors of the tongue, such as the heteromeric sweet taste (TAS1R2/TAS1R3) and umami taste (TAS1R1/TAS1R3) receptors, has been demonstrated in many extra-oral cells and tissues. Gene expression studies have revealed transcripts for all TAS1 and metabotropic glutamate (mGlu) receptors in different types of immune cells, where they are involved, for example, in the chemotaxis of human neutrophils and the protection of T cells from activation-induced cell death. Like other class-C G protein-coupling receptors (GPCRs), TAS1Rs and mGlu receptors form heteromers within their families. Since mGlu receptors and TAS1R1/TAS1R3 share the same ligand, monosodium glutamate (MSG), we hypothesized their hitherto unknown heteromerization across receptor families in leukocytes. Here we show, by means of immunocytochemistry and co-IP/Western analysis, that across class-C GPCR families, mGlu2 and TAS1R3 co-localize and heterodimerize in blood leukocytes. Expressing the recombinant receptors in HEK-293 cells, we validated their heterodimerization by bioluminescence resonance energy transfer. We demonstrate MSG-induced, mGlu2/TAS1R3 heteromer-dependent gain-of-function and pertussis toxin-sensitive signaling in luminescence assays. Notably, we show that mGlu2/TAS1R3 is necessary and sufficient for MSG-induced facilitation of N-formyl-methionyl-leucyl-phenylalanine-stimulated IL-8 secretion in neutrophils, using receptor-specific antagonists. In summary, our results demonstrate mGlu2/TAS1R3 heterodimerization in leukocytes, suggesting cellular function-tailored chemoreceptor combinations to modulate cellular immune responses.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Glutamato Metabotrópico , Humanos , Glutamatos , Células HEK293 , Leucócitos , Glutamato de Sódio , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo
17.
Sheng Li Xue Bao ; 75(4): 529-536, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583040

RESUMO

The aim of the present study was to explore the role of group II and III metabotropic glutamate receptors (mGluRs) in carotid body plasticity induced by chronic intermittent hypoxia (CIH) in rats. Sprague Dawley (SD) rats were treated with CIH in Oxycycler A84 hypoxic chamber for 4 weeks, and the tail artery blood pressure was measured at the end of model preparation. RT-qPCR was performed to examine the mRNA expression levels of mGluR2/3/8 in rat carotid body. Carotid sinus nerve activity was detected by ex vivo carotid sinus nerve discharge recording technique, and acute intermittent hypoxia (AIH) was administered to induce carotid body sensory long-term facilitation (sLTF), in order to observe the role of group II and group III mGluRs in carotid body plasticity induced by CIH. The results showed that: 1) After 4 weeks of CIH exposure, the blood pressure of rats increased significantly; 2) CIH down-regulated the mRNA levels of mGluR2/3, and up-regulated the mRNA level of mGluR8 in the carotid body; 3) AIH induced sLTF in carotid body of CIH group. In the CIH group, activation of group II mGluRs had no effect on sLTF of carotid body, while activation of group III mGluRs completely inhibited sLTF. These results suggest that CIH increases blood pressure in rats, and group III mGluRs play an inhibitory role in CIH-induced carotid body plasticity in rats.


Assuntos
Corpo Carotídeo , Receptores de Glutamato Metabotrópico , Ratos , Animais , Corpo Carotídeo/metabolismo , Ratos Sprague-Dawley , Hipóxia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , RNA Mensageiro/metabolismo
18.
Biomolecules ; 13(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509100

RESUMO

The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression.


Assuntos
Maleato de Dizocilpina , Receptores de Glutamato Metabotrópico , Animais , Maleato de Dizocilpina/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Ácido Glutâmico , N-Metilaspartato , Teste do Labirinto Aquático de Morris , Receptores Muscarínicos
19.
J Physiol ; 601(17): 3905-3920, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431690

RESUMO

Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.


Assuntos
Células de Purkinje , Receptores de Glutamato Metabotrópico , Masculino , Animais , Camundongos , Células de Purkinje/fisiologia , Receptores de AMPA/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cerebelo/metabolismo , Proteínas de Transporte/metabolismo , Sinapses/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Sci Adv ; 9(22): eadf1378, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267369

RESUMO

Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.


Assuntos
Receptores de Glutamato Metabotrópico , Regulação Alostérica , Ligantes , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Glutamatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...